Qı	Question		Expected Answers	Marks	Additional Guidance
1	a		A quantity with magnitude / size and direction	B1	
			Suitable example: displacement / velocity / acceleration / force / weight etc	B1	
	b	i	$F_x = F \cos \theta$	~ 1	
			$7.0 = F \times \cos 30$	C1	
			F = 8.1 (N) or 8.08 (N)	AI	Allow: 1 mark for 'radian' error; answer is 45.3 (N)
		••	1		Note: No marks for $7.0 \times \cos 30 = 6.06$ N
		11	$W = 7.0 \times 5.0 \text{or} W = 8.08 \times 5.0 \times 200^{2}0$	C1	Possible act
			$W = 7.0 \times 5.0$ of $W = 8.08 \times 5.0 \times 2000$ work done = 35 (I)	A1	Note: If answer for (b)(i) is 6.06 (N), then '6.06 \times 5.0 \times cos30 = 26.2 (I)'
			work done $= 35$ (3)	111	scores $2/2$ because of ecf
			2 'power' = $35/4.2$	B1	Possible ecf
			= 8.3 (W)		
	с	i	Magnitude is 120 (N) / equal to weight	B1	
			Direction is (vertically) up / opposite to weight	B1	
		ii	Correct diagram	M1	Note: For the M1 mark, the basic diagram must have all sides labelled (70, 120 and <i>T</i>) and the angle between 70 (N) and <i>T</i> is judged by eye to
			Correct detail on diagram	A1	be 90° Note: For the A1 mark, all the arrows are marked and cyclic
			$120^2 = 70^2 + T^2$	C1	
			<i>T</i> = 97 (N) or 97.5 (N)	A1	Note: For the C1 A1 marks, $T = \sqrt{120^2 + 70^2} = 140$ scores zero Allow: 2 marks for <i>T</i> in the range of 94 (N) to 100 (N) if scale drawing is done
			Total	13	

Question		on	Answer	Marks	Guidance
2	(a)		(1 watt is equal to) 1 joule (of energy transferred) <u>per</u> second	B1	Allow: (1) J <u>s⁻¹</u> Not: '1 J (of energy transferred) <u>in</u> 1 s' because the <u>per</u> or <u>rate</u> idea is not clear Note: Do not allow mixture of quantity and unit. Eg: '1 J per unit time' or 'energy per second'
	(b)	(i)	$E_{\rm p} = 700 \times 9.81 \times 8.5$ $E_{\rm p} = 5.8(4) \times 10^4 ({\rm J})$	B1	
		(ii)	output power = $\frac{5.84 \times 10^4}{45}$ output power = 1.3×10^3 (W)	B1	Possible ecf from (i)
		(iii)	input power = $1.3 \times 10^3/0.3$ input power = 4.3×10^3 (W)	B1	Possible ecf from (ii)
			Total	4	

Question		on	Answer	Marks	Guidance
3	(a)	(i)	(work done =) Fx and $F = ma$ (Allow any subject)	B1	Allow: <i>d</i> or <i>s</i> instead of <i>x</i>
		(ii)	$(E_k =) max \text{ or (work done =) } max$ (Allow any subject)	B1	Note : This mark is for substituting ' <i>ma</i> ' into the equation ' <i>Fx</i> '
			$v^2 = 2ax$	B1	
			Use of $v^2 = 2ax$ and $E_k = max$ to show KE = $\frac{1}{2}mv^2$	B1	Note : This B1 mark is for manipulation of equations leading to $KE = \frac{1}{2} mv^2$
					Allow full credit for alternative approaches
	(b)		The (braking) distance is more (than 50m)	B1	
			KE = Fx	B1	Alternative: $F_X = \frac{1}{2}m^2$ B1
			Correct reasoning for longer braking distance, eg: (KE increases and) $x \propto KE$	B1	Correct reasoning for longer braking distance, eg: $x \propto m$ B1
			Or		
			The (braking) distance is more (than 50m)	B1	
			The van has smaller deceleration (for the same force)	B1	Allow: smaller acceleration
			Correct reasoning for longer braking distance in terms of $v^2 = u^2 + 2as$	B1	Allow : Correct reasoning for longer distance in terms of equations of motion
			Total	7	